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Abstract

 The case-only design is an efficient and valid approach to screening for gene-

environment interaction under the assumption of the independence between

exposure and genotype in the population. In this paper, we show that the case-

only design is also a valid and efficient approach to measuring gene-gene

interaction under the assumption that the frequencies of genes are independent

in the population. Just as the case-only design requires fewer cases than the

case-control design to measure gene-environment interaction, it also requires

fewer cases to measure gene-gene interactions.

Genetic studies have evolved from simple analysis of single genes to

include more sophisticated analysis of complex traits, an evolution that
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parallels an increasing recognition of the role of gene-environment interactions

in disease etiology (1). Genetic factors probably contribute to virtually every

human disease, conferring susceptibility or resistance, or influencing

interaction with environmental factors. In addition to their use in studies of

examining gene-environment interactions in human complex traits, genetic

studies have increasingly been used to examine the effects of gene-gene

interactions in disease etiology. Examples include studies of the interaction of

5,10 methylenetetrahydrofolate reductase (MTHFR), and cystathionine-beta

synthase (CBS) in determining risk for neural tube defects (NTDs) (2-5); a study

of the interaction of apo E/apo C-I, angiotensin-converting enzyme (ACE), and

MTHFR, in determining risk for coronary artery disease (CAD) (6); and a study

of factor V Leiden and MTHFR, in determining genetic susceptibility to

preeclampsia (7). Many other studies of the contributions of genetic factors in

human diseases suggest that gene-gene interactions may play an important role

in the etiology of the diseases studied (8-12). As the Human Genome Project
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provides further information on all human genes, the studies of gene-gene

interactions will play an increasingly important role in the search for the causes

of human diseases. 

Previous work has shown that the case-only design is an efficient and

valid approach to screening for gene-environment interaction under the

assumption of independence between exposure and genotype in the population

(13, 14). In this paper, we demonstrate that the case-only design is also a valid

approach to measuring the effects of gene-gene interactions, assuming that the

genes under study are not in linkage disequilibrium. Like studies of gene-

environment interactions, studies of gene-gene interactions require fewer case

subjects to measure gene-gene interactions if they use a case-only design rather

than a case-control design.

METHODS

While there is no unified definition of gene-gene interaction, we may

broadly define the gene-gene interaction as the effects of one or more genes in
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determining the occurrence of the diseases are modified by the presence or

absence of another gene or genes. In the study of gene-gene interaction, the

primary interest is to assess the proportion of disease among those who are

jointly exposed is due to the interaction of the exposure to the two or more gene

variants.  

For the purpose of demonstration, we assumed two disease susceptibility

genes (gene 1 and gene 2) non-linked at two loci with gene frequencies of P1 and

P2 in the population. Each of these disease susceptibility genes has two allelic

variants (susceptible and non-susceptible) that follow an autosomal dominant

inheritance pattern. If the two genes under study are on the same chromosome,

we assume that they are not in linkage disequilibrium in the population at risk.

We also assume the existence of background risk unrelated to either gene.

For the two diallelic genes, let the first subscript i indicate that the variant

of gene 1 is present (1) or absent (0), and second subscript j indicate the present

(1) and absent (0) of the variant of gene 2. Let pij denote the proportion of the
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?co '
ad
bc

'
(P11·N·R11)(P00·N·R00)
(P10·N·R10)(P01·N·R01)

'
(P11·R11)(P00·R00)
(P10·R10)(P01·R01)

(1)

population who have the variant of gene 1 at level i (i.e., i=1 for present, i=0 for

absent) and the variant of gene 2 at level j. Let Rij indicate the risk associated

with the combinations of present and absent of the variants of gene 1 and gene

2, e.g., R10 indicates the risk of disease for persons having gene 1 variant alone

and R01 indicates the risk of disease for persons having gene 2 variant alone.

Table 1 shows the distribution of the number of cases expected to arise during

follow-up of a “fixed” population in terms of genes frequencies in the population

and risks associated with the combination of present and absent of the gene

variants. We can construct a 2-by-2 table using cases only by the presence and

absence of the gene 1 and gene 2 variants (Table 2). From this table of

representative subset of cases, the case-only cross-product (? co) is: 

Let a “.” in the subscript refer to the marginal (overall) frequency of the genes in

the population, so that p1. refers to the marginal frequency of gene 1 variant, p.1
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?co '
(P1.P.1·R11)(P0.P.0·R00)
(P1.P.0·R10)(P0.P.1·R01)

'
R11R00
R10R01

(2)

refers to the marginal frequency of gene 2 variant, p.0 refers to the proportion of

the population without mutant allele of gene 1, and p0. refers to the proportion of

the population without mutant allele of gene 2. We assume that two genes are

distributed independently in the population and are not in linkage

disequilibrium, then p11 = p1.·p.1, p10 = p1.·p.0, p01 = p0.·p.1, and p00 = p0·p.0.

Substituting these marginal frequencies into equation 1 for case-only ? co, we

have:

If we define the risk ratios as: RR11 = R11/R00, RR10 = R10/R00, and RR01 = R01/R00,

? co can be expressed in terms of risk ratios as: ? co = RR11 / RR10·RR01.

Assuming that the genes under study are not in linkage disequilibrium, if

the effects for the two genes conform to a multiplicative relation, then the case-

only ? co in a representative sample of cases only should equal unity, i.e., RR11 /

RR10·RR01 = 1. When the case-only ? co departs from unity, either the population
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frequencies of the genes are not independent or the gene-specific event rates do

not conform to a multiplicative relation of joint effect. Under the assumption of

independent gene frequencies in the population, the case-only ? co provides an

estimate of the ratio of the joint effect (RR11) divided by the product of the

individual effects of each gene alone (i.e.,? co = RR11 / RR10·RR01), which can be

regarded as effect measure modification of risk ratio on a multiplicative scale or

a gene-gene interaction of the risk ratio.

Thus, for assessing gene-gene interaction in the etiology of a disease,

investigators can use a case-only design if the two genes under study are in

linkage equilibrium. Although we present the case-only ? co in the context of

gene-gene interaction, the algebraic relation involved applies to any two factors

that are distributed independently in a population whose cases are identified or

sampled in proportion to their occurrence. 

The approach proposed here differs from that proposed by other authors

who used a logistic model to measure gene-environment interaction with the
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R11 '
R10R01
R00

(3)

case-only design (13, 14). We have shown that the cross-product term (? co) in a

case-only 2-by-2 table measures the departure from the multiplicative joint

effects of risk ratios, but not odds ratios. Our results show that if the cross-

product in a case-only design is unity, then the risk ratios multiply. That is, if

? co = 1, then,

Thus, use of the cross-product in a case-only design to measure gene-gene

interaction reflects departure from multiplicativity of risk ratios.

On the other hand, Piegorsch et al.(13) formulated disease risk using a

logistic model to measure gene-environment interaction. They assumed rare

disease and a logistic model, and showed that the cross-product in a case-only

design reflected departure from multiplicativity of odds ratios. In other words, if

there is no interaction,
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R11
(1&R11)

.
(

R10
1&R10

)(
R01
1&R01

)

(
R00
1&R00

)
(4)

where the first subscript (i = 0 or 1) indicates the presence (1) or absence (0) of an

arbitrary disease susceptibility gene, and second subscript indicates the presence

(1) and absence (0) of environmental exposure for the study of gene-environment

interaction. This expression has the same form as equation (3), except that odds

ratios appear in place of risk ratios.

For a rare disease, risk ratios approximate odds ratios so that our results

imply that the cross-product measures departure from a multiplicative relation of

odds ratios, as shown by Piegorsch et al.(13). Our results, however,  also show

that the cross-product (? co) remains a valid measure of departure from

multiplicativity of risk ratios even if the disease is not rare.

EXAMPLE

Ramsbottom et al. (5) studied the relation between specific MTHFR and
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CBS polymorphism and NTD risk with 127 case and 430 control subjects in an

Irish population. Botto et al. (15) re-analyzed data derived from that study using a

2-by-4 table with estimated gene (MTHFR and CBS) frequencies in the population.

Both found that, compared with subjects with neither mutation, the NTD risk was

2.1 times higher among those who had the MTHFR mutation only (95% CI, 1.1-

3.9), 0.8 times higher among those who had CBS mutation only (95% CI, 0.4-

1.4), and 5.2 times higher among those who had both mutations (95% CI, 1.4-

21.2). These results indicate an odds ratio of 3.1 (95% CI=0.8-13.1) for gene-gene

interaction (ORint = 5.2/(0.8*2.1), the factor by which the odds ratio for those

exposed to gene 1 and gene 2 is different from the multiplied effect of each gene

alone. Using the case-only design, we estimate an interaction risk ratio of 2.0

(95% CI 0.6-6.0) for gene-gene interaction, also implying interaction. 

Like studies of gene-environment interaction using case-only design (16),

studies of gene-gene interaction also require fewer case subjects if a case-only

design is used than if a case-control design is used. Furthermore, because the
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risk for NTD is low, our results are similar to those that would be derived from a

logistic model.

DISCUSSION

Our results show that the case-only design is a valid and relatively efficient

approach to measuring gene-gene interaction under the assumption that gene

frequencies in the population are independent (e.g., linkage equilibrium or

independent assortment). With the rapid progress of the Human Genome Project,

which will provide further information on human genes, studies of gene-

environment and gene-gene interactions will play an increasingly important role

in determining the etiology of complex human diseases. As we have shown, the

case-only design can be an effective means of conducting these studies. 

It is important to point out that the definition and measurement of

interaction has been a subject for debate in the epidemiologic literature (17-27). A

major distinction is between the concepts of statistical and biological interaction.
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Statistical interaction occurs if the effects of two or more risk factors is not

additive on an arbitrary scale of measurement. This concept of interaction has

been criticized because it ignores the concept of biological interaction, and is

inherently arbitrary and model-dependent (22, 26-27). Biological interaction

refers to the coparticipation of two risk factors in the same causal mechanism for

the disease development (18, 27). Complete absence of biologic interaction can,

under certain conditions, imply additivity of risk differences (27). In measuring

biological interaction, the primary interest is not to conduct the statistical

modeling, but to assess the proportion of disease among those who are jointly

exposed to both factors that may be due to the interaction of the two exposures.

Many studies have suggested that for addressing public health concerns

regarding disease frequency reduction, biologic interaction, i.e., assessing

deviations from additivity, are most relevant (18, 20, 24, 27). 

As noted before, the cross-product (? co) in a case-only design measures the

ratio of RR11 to RR01·RR10, a measure of departure from risk ratio multiplicativity.
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On the other hand, the state of no interaction on an additive scale implies: RR11 =

RR01 + RR10 - 1. Unfortunately, the risk ratios associated with each gene alone

(RR01 or RR10) cannot be estimated without employing proper control population.

It is not difficult to show that for two genes, (RR01·RR10) = (RR01 + RR10 -1) if the

effect of one of the gene (RR01 or RR10) = 1 or both RR01 and RR10 = 1. Under these

circumstances, a departure from multiplicativity is equivalent to a departure from

additivity. In this situation, the case-only design can indicate departure from

additivity, which, under certain conditions, can be derived from the biologic null

of independent action (27). Furthermore, if both genes confer increased risk,

RR01·RR10 is greater than (RR01 + RR10 -1), which implies that the measured

departure from multiplicativity must reflect an even greater departure from

additivity. The differences between RR01·RR10 and (RR01 + RR10 -1) approach zero

as the effects of both genes acting alone approach one. Thus, the case-only design

can be used, under certain conditions, to indicate departure from additivity, and

in turn, biologic interaction.
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There are several limitations, however, to using the case-only design to

measure gene-gene interactions. The most important limitation is that the case-

only design does not measure departure from additivity, it measures departure

from the multiplicative joint effects of two risk ratios. Under certain conditions,

i.e., RR01 or RR10 = 1 or both RR01 and RR10 = 1, a departure from multiplicativity

equals a departure from additivity. The investigators should keep in mind this

important limitation when using case-only design to measure the effects of gene-

gene interaction. Second, the genes under study must be in linkage equilibrium,

assort independently, or otherwise have independent genes frequencies in the

population being studied. Linkage disequilibrium between any genes being

studied can invalidate a case-only design to measure gene-gene interaction. In

studies of most disease susceptibility genes in which the case-only design would

be applied, we suspect that the investigators would know where the genes are

located. Genes on different chromosomes are unlikely to be correlated. The

probability of correlations (linkage disequilibrium) between genes on the same
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chromosome will increase, especially for those that are physically close to each

other. Investigators will have to interpret results of case-only studies cautiously or

use another approach when examining the gene-gene interactions for genes that

may be in linkage disequilibrium. Third, the case-only design cannot estimate the

risk associated with each gene alone (R10 or R01). The effect of each gene alone

could be estimated from a case-control study, a case-parental control study or

other types of studies (28-29). Finally, the effects of population stratification may

also invalidate the results of a case-only study. For example, if two gene

frequencies occur together commonly in a particular ethnic population, and this

population also has high risk for the disease, the effect of gene-gene interaction

can be overestimated. One can try to restrict the analysis to avoid that particular

ethnic population.

Investigators are increasingly searching for gene-gene interactions in

human complex traits. With the rapid progress in molecular technology and the

Human Genome Project, there will be increased interest in searching for the
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effects of gene-environment and gene-gene interactions in disease etiology. The

case-only design is a useful tool with which to rapidly screen for these

interactions.
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TABLE 1. The expected distribution of cases for gene-gene interaction analysis
by gene frequencies in the population and risks associated with these gene
variants in a case-only design 

Gene 1
variant

Gene 2
variant

Gene frequencies
in population

Risk associated
with genes

No. of expected
cases

 +  + p11 R11  p11·R11·N

 +  - p10 R10  p10·R10·N

 -  + p01 R01  p01·R01·N

 -  - p00 R00  p00·R00·N

Where  
 p11    = proportion of population who have both gene variants.
 p10    = proportion of population who have gene 1 variant only.
 p01    = proportion of population who have gene 2 variant only.
 p00    = proportion of population who have neither mutant genes.

 R11  = disease risk of having both gene variants (gene 1 variant = 1 and gene 2
variant = 1).
 R10  = disease risk of having gene 1 variant alone (gene 1 variant = 1 and gene 2
variant = 0).
 R01  = disease risk of having gene 2 variant alone (gene 1 variant = 0 and gene 2
variant = 1).
 R00  = back ground disease risk (gene 1 variant = 0 and gene variant 2 = 0).
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TABLE 2. Case-only 2-by-2 table classified by the presence and absence of gene
1 variant and gene 2 variant

_____________________________________________
Gene 1 Gene 2 variant
variant + - 

_____________________________________________

 + a b

 - c d

                                     
_____________________________________________

Where  a = p11·R11·N
  b = p10·R10·N
  c = p01·R01·N
  d = p00·R00·N

? co = ad/bc
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TABLE 3. Estimated odds ratios of MTHFR and CBS gene variants for NTD risk
                                                                                                                         
MTHFR CBS Cases Controls OR 95% CI
______________________________________________________ 

 + + 7 5 5.2 1.4-21.2
 + - 19 34 2.1 1.1-3.9      
 + - 16 76 0.8 0.4-1.4
 + - 85 315 1.0      -
                                                      
Derived from Botto et al.(15).

In a case-control design, the odds ratio for MTHFR (+) and CBS (+) = 5.2, and gene-
gene interaction = 3.1 (95% CI, 0.8-13.1) since R10 (MTHFR) = 2.1, R01 (CBS) = 0.8.
The estimation of effect of gene-gene interaction using a case-only design, ? co = (7*85)
/ (19*16) =  2.0 (95% CI, 0.6-6.0). 


